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Field Representation

• As a fluid moves, its properties in general change from point to point in space and 
from time to time.

• In field representation of a flow, fluid and flow properties are given as functions of 
space coordinates and time.

𝑝 = 𝑝 𝑥, 𝑦, 𝑧, 𝑡 , 𝑉 = 𝑉 𝑥, 𝑦, 𝑧, 𝑡 , 𝑒𝑡𝑐.

• If there is no time dependency in a flow field, it is said to be steady, otherwise it is 
unsteady.

Movie
Steady and 

unsteady flows 

Movie
von Karman 
vortex street

Movie
Wing tip vortices

Movie
Flow around a car
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Different Viewpoints for Fluid and Solid Mechanics

• In solid mechanics we are usually interested in how material moves or deforms. 
We focus our attention on material and follow its motion/deformation.

• We locate a solid particle (or group of particles) at an initial time and study their 
motion in time to determine where they go.

• We are interested in particles’ trajectories and their final positions, such as golf 
ball’s point of hitting or maximum deflection of the beam’s center point.

http://www.protee-united.com http://en.wikiversity.org
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Different Viewpoints for Fluid and Solid Mechanics (cont’d)

• However, in fluid mechanics we are generally interested in how things 
behave/change at a point, on a surface or inside a volume. We focus our attention 
not on material, but on space (location).

• For a lift force generating wing, we need to know the pressure distribution over 
the wing. We are not really interested in the original locations of fluid particles 
that cause the lift or where they go after they passed over the wing.

• To measure the amount of liquid flowing in a pipe, we need to make calculations
at the exit cross section of it. We do not need to follow the fluid particles that pass 
through that exit section.

http://w3.shorecrest.org/~Lisa_Peck/Physics http://www.fluidlogger.com
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Lagrangian (Material) Description

• Identified fluid particles are followed in the course of time as they move in a flow 
field.

• NOT preferred in fluid mechanics, more suitable to solid mechanics.

• Consider the following experiment where a fluid flows in a converging duct.

• We located a particle P at time t0 at the entrance of the duct and follow it in time 
and measure its speed.

Time Particle P’s speed [m/s]

t0 5

t1 8

t2 10

t3 15

t4 20

PPP

t2t0 t1
t3 t4

P P
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Lagrangian (Material) Description (cont’d)

• In following a particle, the only independent 
variable is time.

• Space coordinates (𝑥, 𝑦, 𝑧) of particle P are NOT 
independent variables.

• When we select a particle by identifying it at its 
initial location at an initial time, its location at a 
future time, say 𝑡3, depends on which particle we 
are following and the value of 𝑡3.

• Properties of particle P are in general expressed as

position of P   :      𝑟𝑃 𝑡

velocity of P   :     𝑉𝑃 𝑡

pressure of P  :   𝑝𝑃 𝑡

etc.

Lagrangian 
description

PPP

t2t0 t1
t3 t4

P P

𝑧

𝑥
𝑦

 𝑟𝑃(𝑡3)
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Eulerian (Spatial) Description

• Attention is focused at fixed points (or area or volume) in the flow field and the 
variation of properties at these points are determined as fluid particles pass through 
these points.

• This is the preferred viewpoint for fluid mechanics.

• Consider the same flow in the converging duct, but now concentrating at two points, 
A and B (or two sections, inlet and exit).

B
A

Time Speed at A Speed at B

t0 5 20

t1 5 20

t2 5 20

t3 5 20

t4 5 20

3-8

Eulerian (Spatial) Description (cont’d)

• Now both time and space coordinates are 
independent variables.

• Location of point A (or B) does NOT depend on the 
flow field or time.

• Fluid and flow properties at a point (e.g. point A) are 
expressed as

position :  𝑟𝐴 𝑥𝐴, 𝑦𝐴, 𝑧𝐴

velocity :    𝑉𝐴 𝑥𝐴 , 𝑦𝐴, 𝑧𝐴, 𝑡

pressure :    𝑝𝐴 𝑥𝐴, 𝑦𝐴, 𝑧𝐴, 𝑡 , etc.

• The duct flow described in the previous slides is said to be steady if the flow 
properties (such as velocity, pressure, etc.) do not change with time.

• For steady flows time is NOT a variable in the Eulerian description.

• But time is always an independent variable in the Lagrangian description, even for 
steady flows. Without time, a fluid particle simply can not move.

Eulerian 
description

B
A

𝑧

𝑥
𝑦

 𝑟𝐴
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Lagrangian vs. Eulerian Description

Exercise : Are the following descriptions Lagrangian or Eulerian ?

• A doctor using X-ray opaque dye to trace blood flow in arteries.

• A civil engineer studying the traffic load of a highway by focusing at a certain 
section of the road and counting the number of cars passing in front of him 
during a certain period of time.

• A student performing a wind tunnel experiment and measuring the velocity at 
different points of a flow field by manually moving a velocity measuring 
probe.

• Fluid dynamic measurements performed in the lab are suited to the Eulerian 
description. A velocity or pressure probe inserted in a flow field do NOT move 
with the flow, but provide data at the locations we point it to.

Exercise : Visit Storm Chaser’s web site to see the use of a Lagrangian type probe 
for gathering data inside a twister. Also you can watch the movie Twister to see 
such probes in action. 
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Use of Eulerian Description for Solid Mechanics

• Eulerian description is preferred in studying very high deformation solid mechanics
problems, in which solids show fluid-like behavior.

Exercise : Do a research on the working principle of ‘‘shaped charge’’ used for 
armor penetration. Watch the movie 
http://www.youtube.com/watch?v=LudNqf56AFo

Exercise : Watch the following movies in which solids undergo very excessive (fluid-
like) deformation. 

Aluminum extrusion :  http://www.youtube.com/watch?v=9mQ2ic-kDlk

Deep drawing : http://www.youtube.com/watch?v=PBB3utteDq0

Crash test : http://www.youtube.com/watch?v=CcXhjH0hex0

Shaped charge and 
its penetration

http://defense-update.com
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Use of Lagrangian Description for Fluid Mechanics

• A doctor using an X-ray opaque dye to trace blood flow in arteries performs a 
Lagrangian study.

• In some Computational Fluid Dynamics (CFD) studies motion of fluid particles are 
modeled in a Lagrangian way.

Exercise : Watch this particle simulation of flow around a car

http://www.youtube.com/watch?v=RuZQpWo9Qhs

Exercise : RealFlow is a particle based fluid simulation software used in film-making 
and television industry. Visit http://www.realflow.com/product/production/casestudies

to see its capabilities.

Movie
SPH Simulation of a tanker in wave

Movie
RealFlow Demo Reel

Lagrangian - Eulerian Relation

• Consider a property 𝑁 (can be velocity, density, pressure, etc.) in a flow field.

• At time 𝑡 fluid particle P passes through a point A in space.

Exercise: Work on the details of the following important relation

3-12

𝑧

𝑥
𝑦

Path of 
particle P

 𝑟𝑃(𝑡)

At time 𝑡, particle P passes 
through point AA

Rate of change of property 𝑁 of 
particle P at time 𝑡 from a Lagrangian 
point of view

Rate of change of property 𝑁 at 
point A from an Eulerian point of 
view

=

http://blogs.discovery.com/storm_chasers/2010/05/dominator-fully-loaded-the-ultimate-tornado-research-machine.html
http://www.imdb.com/title/tt0117998/
http://www.youtube.com/watch?v=LudNqf56AFo
http://www.youtube.com/watch?v=9mQ2ic-kDlk
http://www.youtube.com/watch?v=PBB3utteDq0
http://www.youtube.com/watch?v=CcXhjH0hex0
http://www.youtube.com/watch?v=RuZQpWo9Qhs
http://www.realflow.com/product/production/casestudies


𝑑𝑁

𝑑𝑡
=

𝜕𝑁

𝜕𝑡
+ 𝑉 ∙ 𝛻 𝑁

• Material derivative : Rate of change of property 𝑁 in the material description 
(following a particle)

• Local derivative : Rate of change of property 𝑁 (at a fixed point) with time only. 
For a steady flow this term is zero for any property.

• Convective derivative : Change of property 𝑁 (at a fixed point) with space only, 
i.e. at a fixed time. If there is no flow this term is zero.

Material derivative 
(Substantial derivative)

(Total derivative)

Local derivative 
(Partial derivative)

Convective derivative
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Lagrangian - Eulerian Relation (cont’d)
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Understanding the convective derivative 𝑉 ∙ 𝛻 𝑁

• Let the property 𝑁 represents the temperature 𝑇.

• Consider the following simple temperature field (shown with constant 𝑇 lines).

• In this 2D temperature field 𝑇 changes only in the vertical direction.

• Gradient of temperature (𝛻𝑇) is in the vertical direction.

• If you move in this direction you’ll feel the most rapid change of 𝑇.

10 ℃
20 ℃
30 ℃
40 ℃
50 ℃

10 ℃
20 ℃
30 ℃
40 ℃
50 ℃

𝛻𝑇

3-15

Understanding the convective derivative 𝑉 ∙ 𝛻 𝑁

• Consider moving in this 𝑇 field in different directions.

If we move perpendicular to 𝛻𝑇
we feel no temperature change

𝑉 ∙ 𝛻 𝑇 = 𝑉 ∙ 𝛻𝑇 = 0

𝑉

10 ℃
20 ℃
30 ℃
40 ℃
50 ℃

𝛻𝑇

If we move parallel to 𝛻𝑇 we feel 
the maximum temperature change

𝑉 ∙ 𝛻 𝑇 = 𝑉 ∙ 𝛻𝑇 = maximum

10 ℃
20 ℃
30 ℃
40 ℃
50 ℃

𝛻𝑇

𝑉

If we move at an angle to 𝛻𝑇 we feel 
a nonzero temperature change

𝑉 ∙ 𝛻 𝑇 = 𝑉 ∙ 𝛻𝑇 ≠ 0
10 ℃
20 ℃
30 ℃
40 ℃
50 ℃

𝛻𝑇

𝑉

𝑑𝑁

𝑑𝑡
=

𝜕𝑁

𝜕𝑡
+ 𝑉 ∙ 𝛻 𝑁

• Steady state operation of a water heater.

• 𝜕𝑇/𝜕𝑡 at any point is zero, but 𝑑𝑇/𝑑𝑡 of 
a moving fluid particle is not zero.

• Partial derivative of 𝑇 is zero, but 
convective derivative is not.

𝑇𝑖𝑛

Cold

Hot

𝑇𝑜𝑢𝑡 > 𝑇𝑖𝑛
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Understanding the convective derivative (cont’d)

• Steady, uniform flow in a converging-
diverging nozzle.

• Fluid particles first accelerate and than 
decelerate.

• 𝜕𝑢/𝜕𝑡 at any point is zero, but 𝑑𝑢/𝑑𝑡 of a 
moving fluid particle is not.

• Partial derivative of 𝑢 is zero, but 
convective derivative is not.

𝑢1 𝑢2 > 𝑢1
𝑢3 < 𝑢2

1 2 3



Acceleration of a Fluid Particle

• Selecting 𝑁 as 𝑉 in equation   
𝑑𝑁

𝑑𝑡
=

𝜕𝑁

𝜕𝑡
+ 𝑉 ∙ 𝛻 𝑁 ,  acceleration of a fluid 

particle can be obtained as

𝑑𝑉

𝑑𝑡
=

𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ 𝛻 𝑉

• Components of the acceleration vector in Cartesian coordinate system are

𝑎𝑥 =
𝑑𝑢

𝑑𝑡
=
𝜕𝑢

𝜕𝑡
+ 𝑉 ∙ 𝛻 𝑢 =

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧

𝑎𝑦 =
𝑑𝑣

𝑑𝑡
=
𝜕𝑣

𝜕𝑡
+ 𝑉 ∙ 𝛻 𝑣 =

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧

𝑎𝑧 =
𝑑𝑤

𝑑𝑡
=
𝜕𝑤

𝜕𝑡
+ 𝑉 ∙ 𝛻 𝑤 =

𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
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Local acceleration
Convective accelerationAcceleration (  𝑎)

Acceleration of a Fluid Particle (cont’d)

Exercise : Using the following  𝛻 operator in the cylindrical coordinate system

𝛻 =
𝜕

𝜕𝑟
𝑖𝑟 +

1

𝑟

𝜕

𝜕𝜃
𝑖𝜃 +

𝜕

𝜕𝑧
𝑖𝑧

and the fact that in cylindrical coordinate system unit vectors have the following 
non-zero derivatives

𝜕𝑖𝑟

𝜕𝜃
= 𝑖𝜃 and    

𝜕𝑖𝜃

𝜕𝜃
= −𝑖𝑟

derive the following acceleration components

𝑎𝑟 =
𝜕𝑉𝑟
𝜕𝑡

+ 𝑉𝑟
𝜕𝑉𝑟
𝜕𝑟

+
𝑉𝜃
𝑟

𝜕𝑉𝑟
𝜕𝜃

+ 𝑉𝑧
𝜕𝑉𝑟
𝜕𝑧

−
𝑉𝜃
2

𝑟

𝑎𝜃 =
𝜕𝑉𝜃
𝜕𝑡

+ 𝑉𝑟
𝜕𝑉𝜃
𝜕𝑟

+
𝑉𝜃
𝑟

𝜕𝑉𝜃
𝜕𝜃

+ 𝑉𝑧
𝜕𝑉𝜃
𝜕𝑧

+
𝑉𝑟𝑉𝜃
𝑟

𝑎𝑧 =
𝜕𝑉𝑧
𝜕𝑡

+ 𝑉𝑟
𝜕𝑉𝑧
𝜕𝑟

+
𝑉𝜃
𝑟

𝜕𝑉𝑧
𝜕𝜃

+ 𝑉𝑧
𝜕𝑉𝑧
𝜕𝑧
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Acceleration of a Fluid Particle (cont’d)

Exercise : Consider one-dimensional, steady, incompressible flow through a 
converging channel.

a) Determine the acceleration field, 𝑎(𝑥), by using the Eulerian method.

b) Using the Lagrangian method, determine the equations for the position and 
acceleration of the fluid particle, which is located at 𝑥 = 0 at time 𝑡 = 0.

c) Show that both expressions for the acceleration give identical results, as the 
fluid particle exits the channel at 𝑥 = 𝐿.

𝑥

𝑦

𝐿
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Velocity field is given by

𝑢 = 𝑈𝑜 1 +
𝑥

𝐿
𝑣 = 0
𝑤 = 0
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Flow Classification as 1D, 2D and 3D

• Following Munson’s book (different in Aksel’s book)

Three-dimensional flow : all 3 velocity components are nonzero.

Two-dimensional flow : only 2 velocity components are nonzero.

One-dimensional flow : only 1 velocity component is nonzero.

2D flow

𝑉𝑧 ≠ 0
𝑉𝑟 ≠ 0
𝑉𝜃 = 0

Axisymmetric nozzle flow

𝑧

𝑟

Couette flow

1D flow

𝑢 ≠ 0
𝑣 = 0
𝑤 = 0

𝑈0

𝑥

𝑦
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Uniform Flow

• The flow is said to be uniform at a cross section if the only nonzero velocity 
component is the one perpendicular to the cross section, and the velocity is not 
changing across the section.

• Uniform flow simplification as used above disregards the no slip condition.

• Instead of the actual velocity profile it uses the average speed at a cross section.

Actual velocity profile Simplified as uniform
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Flow Classification as Steady, Unsteady 

• Steady flow : Local derivatives (𝜕 /𝜕𝑡) are zero in a flow field. Properties at a fixed 
point do not change in time.

• See slide 3-16 for two examples.

• A centrifugal pump working constantly at the same speed between the same 
input and output conditions is said to be working steadily, although there is a 
rotating blade inside it.

• Air flow around a car moving at constant speed is considered to be steady, 
although there are fluctuations in the wake region behind the car.

• Unsteady flow : Local derivatives (at least for 1 property) are nonzero. Properties at 
a fixed point change in time.

• If the inlet water temperature of the heater shown in slide 3-16 changes with 
time, it will be an unsteady flow.

• Pulsatile blood flow in our veins is unsteady. But it is a special kind of unsteady 
flow, it is time periodic. It repeats itself after a certain period.

• von Karman vortex street of slide 3-2 is also unsteady and time periodic.

• A gusty wind blowing over a house is unsteady.
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Flow Classification as Steady, Unsteady (cont’d) 

• Sometimes an unsteady flow can be studied as steady by a proper choice of 
reference frame.

• Consider the following wing moving at a constant speed in still air. 

http://w3.shorecrest.org/~Lisa_Peck/Physics

A

• For an observer fixed at the ground this flow is 
unsteady.

• At an upstream point A, initially air speed is zero. 
But as the wing approaches point A, it will push 
the air there. Observer fixed at the ground will
observe different things at point A at different 
times.

• The same flow becomes steady with respect to an observer moving with the wing.
This observer will always see the same air motion around him/her. Nothing will 
change in time.

• Similar simplifications are observed when turbomachinery flows are studied using a 
rotating reference frame.
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Flow Classification as Laminar, Turbulence

• Laminar flow is a well-ordered state of  flow in which adjacent fluid layers move 
smoothly with respect to each other.

• Laminar flow is usually associated with low speeds and high viscosities.

• Turbulent flow has random, unsteady, 3D fluctuations. There is intense mixing 
and rotation.

• Turbulent flow is usually associated with high speeds.

• Turbulent flows are, by far, more common than laminar ones.

• Although a turbulent flow always have unsteadiness in it, it may be steady in 
the mean (in a time averaged sense). Similarly it can be 2D or 1D in the mean.

Movie
Laminar flow over 

cylinders and airfoils

Movie
Laminar to turbulent 
transition in a pipe

Movie
Wake behind a cylinder
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Pathlines, Streaklines and Streamlines

• These are the common ways used to visualize a flow field.

• Pathline is a line traced out by a fluid particle as it flows in a flow field.

• Pathline is a Lagrangian concept.

• In laboratory it can be generated by marking (dying) a small fluid element and 
taking time exposure photograph of its motion.

• Streakline is a line that joins the particles in a flow that have previously passed 
through a common point.

• In laboratory it can be generated by continuously injecting dye (or bubbles) at a 
point and observing the collection of dyed particles as they move in the flow.

• Streamline is a line that is everywhere tangent to the velocity field.

• It is a mathematical tool, rather than an experimental technique.

• For a steady flow all these three are the same.

• For an unsteady flow they are all different.
NCFMF Movie

Pathline, streakline and 
streamline comparison for 

unsteady oscillating plate flow 3-26

Equation of a Streamline

• Consider a streamline in a 2D flow field.

• At any point velocity vector is tangent to it.

• Slope of the line at any point (𝑑𝑦/𝑑𝑥) should 
be equal to the velocity component ratio (𝑣/𝑢)

𝑑𝑦

𝑑𝑥
=
𝑣

𝑢

which can also be written as

• This can be generalized to a 3D flow as

𝑑𝑥

𝑢
=
𝑑𝑦

𝑣

𝑑𝑥

𝑢
=
𝑑𝑦

𝑣
=
𝑑𝑧

𝑤

• If the velocity field is known as a function of 𝑥, 𝑦 and 𝑧 (and 𝑡 if the flow is unsteady), 
the above equation can be integrated to give the equation of streamlines.

Exercise : For the velocity field given by 𝑉 = 2𝑥 𝑖 − 2𝑦 𝑗 , determine the equation of 
the streamline that passes through point P(2,2,0).

𝑥

𝑦

𝑉

𝑑𝑠

𝑣

𝑢

𝑉

𝑑𝑥

𝑑𝑦
𝑑𝑠

Differential vs. Integral Formulation

• Differential formulation provides a very detailed solution of a flow field.

• When used with Eulerian point of view, it provides information at all points in the 
problem region at all times of interest.

• It requires the solution of differential equations for conservation laws (mass, 
linear momentum and energy).

• Analytical solution of conservation equations are available only for a few very 
simple problems. Computational Fluid Dynamics (CFD) provides an alternative.

Parts of a centrifugal pump
http://www.mcnallyinstitute.com
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Detailed solution of the 
flow field inside a pump

http://www.grc.nasa.gov

Differential vs. Integral Formulation (cont’d)

• Integral formulation used with Eulerian viewpoint focuses at a fixed region of 
space (control volume).

• It studies the interaction of this control volume with its surroundings.

• It is used to determine gross flow effects (not details), such as the lift force 
generated by a wing , thrust generated by a jet engine or the shaft work required 
to run a pump.

• It provides less information compared to differential approach. But it has much 
simpler mathematics. No differential equation is solved.
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𝑉1 , 𝐴1, 𝑝1

𝑉2 , 𝐴2, 𝑝2

Shaft 
work

Integral analysis for a 
control volume 
around a pump



Closed System vs. Control Volume

• A closed system (or just system) is a fixed, identifiable quantity of mass.

• It can change its position and shape, but it always contains the same fluid 
particles.

• It is separated from the surroundings by the system boundaries, which is closed to 
mass transfer. Fluid particles can not pass through it.

• It is closely linked to the Lagrangian description.

• It has the advantage that basic laws (conservation of mass, momentum, energy) 
can be written for it in a very natural and simple way.
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Closed system for the 
perfume is initially 
inside the spray can

After using it, the closed 
system is partly inside and 
partly outside. It follows 
perfume’s motion.

Closed System vs. Control Volume (cont’d)

• A control volume (CV) is a fixed region of a flow field.

• It can NOT change its position or shape, but it contains different fluid particles at 
different times (Note: Moving/deforming CVs can also be defined).

• It is separated from the surroundings  by the control surface (CS), which is open to 
mass transfer. Fluid particles can pass through the CS.

• It is closely linked to the Eulerian viewpoint.

• Reynolds Transport Theorem (RTT) is used to convert basic conservation laws 
written for a closed system to equations that can be used for a CV.
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CV does not change shape after
using the perfume. It does not 
follow perfume's motion. It has an 
exit, through which perfume leaves.

Initial shape 
of the CV.

Basic Laws Written for a System

Conservation of Mass : Mass of a closed system does not change, i.e. time rate of 
change of a closed system’s mass is zero.

𝑑𝑚𝑠𝑦𝑠

𝑑𝑡
= 0 where 𝑚𝑠𝑦𝑠 =  

∀𝑠𝑦𝑠

𝜌 𝑑∀

Conservation of Linear Momentum (Newton’s 2nd Law) : Sum of all external forces 
acting on a system is equal to the time rate of change of its linear momentum.

  𝐹 =
𝑑𝑃𝑠𝑦𝑠

𝑑𝑡
where 𝑃𝑠𝑦𝑠 =  

∀𝑠𝑦𝑠

𝜌 𝑉 𝑑∀

Conservation of Angular Momentum : Sum of all external torques acting on a system 
is equal to the time rate of change of its angular momentum.

 𝑇 =
𝑑𝐻𝑠𝑦𝑠

𝑑𝑡
where 𝐻𝑠𝑦𝑠 =  

∀𝑠𝑦𝑠

𝜌  𝑟 × 𝑉 𝑑∀
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Basic Laws Written for a System (cont’d)

Conservation of Energy (1st Law of Thermodynamics) : Energy of a closed system 
changes by heat and work interaction with its surroundings as follows

 𝑄 +  𝑊 =
𝑑𝐸𝑠𝑦𝑠

𝑑𝑡
where 𝐸𝑠𝑦𝑠 =  

∀𝑠𝑦𝑠

𝜌 𝑒 𝑑∀

𝑒 = 𝑢 +
𝑉2

2
+ 𝑔𝑧

 𝑄 : rate of heat transfer (heat coming into the system is positive)

 𝑊 : rate of work done (work done on the system is positive)

Internal energy 
per unit mass

Potential energy 
per unit mass

Kinetic energy 
per unit mass
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Total energy
per unit mass

Dot means 
“time rate of 
change of ”. 

Same as 
𝑑

𝑑𝑡



Region A
This fluid was outside 
the CV and entered 

into it (inflow)

Reynolds Transport Theorem (RTT)

• All basic laws are naturally written in very simple forms for a closed system.

• But we want to use CVs to study fluid mechanics problems.

• RTT is a general relation between the rate of change of a fluid property in a 
closed system and the corresponding CV.
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At time 𝑡, CV and the 
system coincide

At time 𝑡 + ∆𝑡, CV stays at its 
original place but the system 
moves/deforms with the flow

Region C
This fluid was inside the 
CV and left it (outflow)

Region B
This fluid was inside the 

CV and it is still in it.

CV

Moved system

Reynolds Transport Theorem (cont’d)

• We are interested in the change of an extensive property 𝑁 such as   𝑚, 𝑃, 𝐻 or 𝐸.

• The corresponding intensive (per mass) property is 𝜂, such as  1, 𝑉,  𝑟 × 𝑉 or 𝑒.

𝑁𝑠𝑦𝑠 =  
𝑠𝑦𝑠

𝜌 𝜂 𝑑∀

• From time 𝑡 to  𝑡 + ∆𝑡, 𝑁𝑠𝑦𝑠 may change

𝑑𝑁𝑠𝑦𝑠

𝑑𝑡
=

𝑑

𝑑𝑡
 
𝑠𝑦𝑠

𝜌𝜂𝑑∀ = lim
∆𝑡→0

1

∆𝑡
 
𝑠𝑦𝑠

𝜌𝜂𝑑∀ 𝑡+∆𝑡 − 
𝑠𝑦𝑠

𝜌𝜂𝑑∀ 𝑡 Eqn (∗)
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𝐶𝑉

𝜌𝜂𝑑∀ 𝑡

 
𝐶𝑉

𝜌𝜂𝑑∀ 𝑡+∆𝑡 +  
∀𝐶

𝜌𝜂𝑑∀ 𝑡+∆𝑡 −  
∀𝐴

𝜌𝜂𝑑∀ 𝑡+∆𝑡

𝑁 leaving the CV 
through the exit

𝑁 entering the CV 
through the inlet

Reynolds Transport Theorem (cont’d)

𝑑𝑁𝑠𝑦𝑠

𝑑𝑡
= lim

∆𝑡→0

1

∆𝑡
 
𝐶𝑉

𝜌𝜂𝑑∀ 𝑡+∆𝑡 − 
𝐶𝑉

𝜌𝜂𝑑∀ 𝑡 +  
∀𝐶

𝜌𝜂𝑑∀ 𝑡+∆𝑡 −  
∀𝐴

𝜌𝜂𝑑∀ 𝑡+∆𝑡

Exercise : Study the detailed derivation of RTT from a textbook.
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𝜕

𝜕𝑡
 
𝐶𝑉

𝜌𝜂𝑑∀  
𝐴𝐶

𝜌𝜂(𝑉 ⋅ 𝑛)𝑑𝐴 − 
𝐴𝐴

𝜌𝜂(𝑉 ⋅ 𝑛)𝑑𝐴

 
𝐶𝑆

𝜌𝜂 𝑉 ⋅ 𝑛 𝑑𝐴

𝑉 is the velocity of the 
fluid at the control 
surface CS

𝑛 is the unit 
outward normal 
of the CS.

CS

CV

𝑛

𝑛

𝑉

𝑉

Reynolds Transport Theorem (cont’d)

RTT:
𝑑𝑁𝑠𝑦𝑠

𝑑𝑡
=

𝑑

𝑑𝑡
 
𝑠𝑦𝑠

𝜌𝜂𝑑∀ =
𝜕

𝜕𝑡
 
𝐶𝑉

𝜌𝜂𝑑∀ +  
𝐶𝑆

𝜌𝜂(𝑉 ⋅ 𝑛)𝑑𝐴

3-36

Lagrangian part Eulerian part

Rate of change of 
property 𝑁 within 
the system.

Rate of change of 
property 𝑁 in the 
corresponding CV
(zero for steady flows)

Net flowrate of property 
𝑁 across the CS         
(positive for outflow, 
negative for inflow)

= +

• Important: Left hand side is NOT calculated directly, instead we use

Zero :   for mass conservation

  𝐹 :   for linear momentum conservation

 𝑇 :   for angular momentum conservation

 𝑄 +  𝑊 :   for energy conservation



Reynolds Transport Theorem (cont’d)

Example : Let’s use RTT to study mass conservation in the spray can.

• For mass conservation,  𝑁 = 𝑚 and  𝜂 = 1

𝑑𝑚𝑠𝑦𝑠

𝑑𝑡
=

𝜕

𝜕𝑡
 
𝐶𝑉

𝜌 𝑑∀ +  
𝐶𝑆

𝜌 𝑉 ⋅ 𝑛 𝑑𝐴
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Time rate of change of 
perfume's mass inside the 
spray can. A negative
value.

Amount of mass that leaves 
the can in unit time. A 
positive value (Nonzero only 
at the little opening that the 
perfume can escape from) 

= +Zero

  𝐹
Sum of external 
forces acting on the 
CV

Reynolds Transport Theorem (cont’d)

Example : Let’s use RTT to study the thrust generated by a jet engine.

• For linear momentum conservation,  𝑁 = 𝑃 and  𝜂 = 𝑉

𝑑𝑃𝑠𝑦𝑠

𝑑𝑡
=

𝜕

𝜕𝑡
 
𝐶𝑉

𝜌𝑉𝑑∀ +  
𝐶𝑆

𝜌𝑉 𝑉 ⋅ 𝑛 𝑑𝐴
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Zero for the 
steady
operation of 
the engine.

Net rate of momentum 
outflow (Nonzero only 
at the inlet and exit of 
the engine) 

= +

Force to hold the engine 
in place = Thrust force

Engine on 
test stand

𝐴𝑖𝑛 , 𝑉𝑖𝑛
𝑝𝑖𝑛 , 𝜌𝑖𝑛

𝐴𝑜𝑢𝑡 , 𝑉𝑜𝑢𝑡
𝑝𝑜𝑢𝑡 , 𝜌𝑜𝑢𝑡

 𝑄 +  𝑊
Rate of heat transfer 
and work done on 
the CV

Reynolds Transport Theorem (cont’d)

Example : Let’s use RTT to study the power necessary to run a pump.

• For energy conservation,  𝑁 = 𝐸 and  𝜂 = 𝑒

𝑑𝐸𝑠𝑦𝑠

𝑑𝑡
=

𝜕

𝜕𝑡
 
𝐶𝑉

𝜌𝑒𝑑∀ +  
𝐶𝑆

𝜌𝑒 𝑉 ⋅ 𝑛 𝑑𝐴
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Zero for the 
steady
operation of 
the pump.

Net rate of energy flow 
through the CS (Nonzero 
only at the inlet and 
outlet of the pump) 

= +

Inlet
𝑉1 , 𝐴1, 𝑝1

Outlet
𝑉2 , 𝐴2, 𝑝2

Shaft 
work


